SPECIFICHE

► Caratteristiche GNSS⁽¹⁾

Canali	1408 canali con iStar2.0
GPS	L1C/A, L1C, L2C, L2P(Y), L5
GLONASS	G1,G2,G3
Galileo	E1, E5a, E5b, E6*
BeiDou	B1I, B2I, B3I, B1C, B2a, B2b
QZSS	L1C/A, L1C, L2C, L5
NavIC/ IRNSS	L5*

L1C/A

SBAS

➤ Precisione GNSS(2)	
Cinematico (RTK)	H: 8 mm + 1 ppm RMS V: 15 mm + 1 ppm RMS T Inizializzazione: <10 s Affidabilità Iniz. : >99.9%	
Post-processing Cinematico (PPK)	H: 3 mm + 1 ppm RMS V: 5 mm + 1 ppm RMS	
PPP	Supporta B2b-PPP, E6B- HAS H: 10 cm V: 20 cm	
Statico alta precisione	H: 2.5 mm + 0.1 ppm RMS V: 3.5 mm + 0.4 ppm RMS	
Statico e statico rapido	H: 2.5 mm + 0.5 ppm RMS V: 5 mm + 0.5 ppm RMS	
Mobile	H: 0.4 m RMS V: 0.8 m RMS	
Autonomo	H: 1.5 m RMS V: 2.5 m RMS	
SFix ⁽³⁾	Senza Segnale GNSS: ±5 cm (2σ) Con Segnale GNSS ±3 cm (2σ) @20 m di raggio Compensazione IMU 0-360°	
Vi-LiDAR	Rilievo su immagini multiple con un range fino a 20m Accuratezza con segnale GNSS ±5 cm @15 m Senza segnale GNSS: con SFix, adatto a scenari con ostacoli	
Frequenza IMU	200 Hz, AUTO-IMU	
Angolo IMU	0-60°	
Compensazione IMU	8 mm + 0.3 mm/° tilt down to 30°	

> LiDAR

Range	30 m @ 10% reflectivity 70 m @ 80% reflectivity		
FOV	H: 360° V: 90°		
Classe Laser	Class 1 (IEC60825 - 1:2014)		
Frequenza	860,544 points/second (single - echo mode)		
Linee	96		

➤ Camera Vi-LiDAR

Pixel	8 MP HD telephoto		
Apertura	F/2.2		
FOV	77.5°(H)* 48.8°(V)		
Range Optimal	5 - 20 m		
Caratteristiche	Vi-LiDAR contactless survey, AR visual navigation		

➤ Camera a colori

Pixel	2 MP, doppia camera		
FOV	Doppia camera combinata FOV 130° (H) × 46°		
Caratteristiche	Grandangolare con colorazione nuvola		
	Grandangolaro con colorazione navola		

▶ Camera Inferiore

Pixel	2 MP	
FOV	90°	
Caratteristiche	Tracciamneto Visivo AR	

▶ Caratteristiche Ambientali

Temperatura esercizio	-20°C to +55°C(-4°F to +131°F)	
Temperatura stock	-40°C to +75°C(-40°F to +167°F)	
Protezione	IP67 ⁽⁴⁾ (conforme a IEC 60529)	
Grado resistenza urti	IK08	

► Hardware

Dimens. (LxLxA)	208 mm × 162.0 mm × 95.5 mm (8.19 in × 6.38 in × 3.76 in)	
Peso	1.39 kg (3.06 lb)	
Prot. LiDAR	Standard protective cover	
Pannello	2 LED, 1 physical button	

➤ Elettronica

	-
Batteria	7.2 V/ 9900 mAh/ 71.28 Wh
Assorbimenti	SFix / Vi-LiDAR / Point Cloud Scan: ~15 W UHF/ 4G RTK Rover: ~4 W
Durata ⁽⁵⁾	SFix / Vi-LiDAR / scansione: più di 5 h UHF/4G RTK Rover: 22h
Carica veloce	Supporta caricatore veloce da 30W, tempo di ricarica 5h

▶ Comunicazione

IEEE 802.11g IEEE 802.11ac VHT80 CH42 & 155	
5.0 & 4.2 +EDR	
Standard solo Rx: 410 - 470 MHz Protocollo CHC, Transparent, TT450	
64 GB interna (più di 1h scansione or 30h totali di memorizzazione), espandibile a 1TB	
1 x USB V3.0 Type-C port (scarico dati) 1 x UHF antenna	
RTCM 2.x / 3.x, CMR input/output HCN, RINEX 2.11 / 3.02 NMEA 0183 output, NTRIP client	

▶ Conformità

Cto	-0.0	امعما	II-o-fi
Sta	пu	ard	IIII L

RE Directive 2014/53/EU, IEC 62133-2:2017, EN 18031-1/-2 : 2024, IEC 62368-1:2014, IEC 60825-1-2014, FCC Rules and Regulations Part 15, Radio Equipment in JAPAN, UN Manual Section 38.3

🚇 (E F@ 🛕

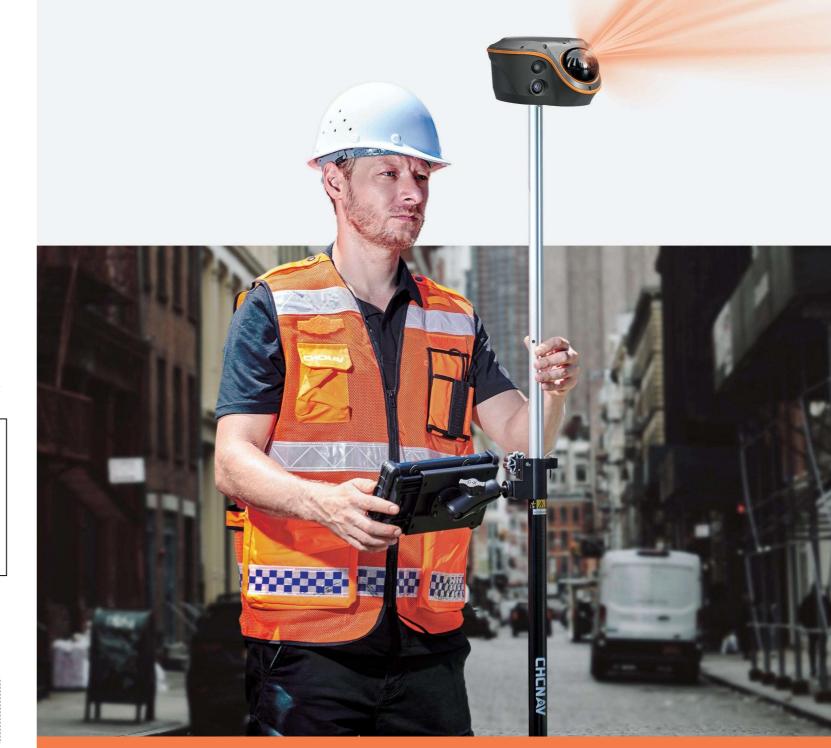
Le specifiche sono soggette a modifiche senza preavviso.

(1) Conforme, ma soggetto alla disponibilità della definizione di servizio commerciale Galileo, QZSS e IRNSS. Galileo E6, Galileo E6 High Accuracy Service (HAS), IRNSS L5 e SBAS L1C/A verranno forniti tramite un futuro aggiornamento del firmware.

(2) La precisione e l'affidabilità sono determinate a cielo aperto, senza percorsi multipli, con geometria GNSS ottimale e condizioni atmosferiche. Le prestazioni presuppongono un minimo di 5 satelliti, il rispetto delle pratiche GPS generali consigliate. L'accuratezza del PPP è soggetta alla regione, all'ambiente e al tempo di convergenza. L'analisi statica ad alta precisione richiede un minimo di 24 ore di osservazione al lungo termine e effementidi precise. un minimo di 24 ore di osservazione a lungo termine e effemeridi precise. (3) Oltre i 20 m, l'errore aumenta di circa 3 cm ogni 10 m aggiuntivi.

(4) Resistente agli spruzzi d'acqua, alla polvere e testato in condizioni di laboratorio controllate

con un grado di protezione IP67 secondo lo standard IEC 60529.


(5) La durata della batteria è soggetta alla temperatura operativa, all'ambiente e alla modalità di lavoro. Tutti i valori dei test sopra riportati provengono dai laboratori interni di CHC Navigation in condizioni tipiche. I risultati effettivi possono variare a causa delle differenze del prodotto, delle versioni del software, dell'utilizzo e di fattori ambientali.

©2025 Shanghai Huace Navigation Technology Ltd. Tutti i diritti riservati. Il logo CHCNAV e CHCNAV sono marchi di Shanghai Huace Navigation Technology Limited. Tutti gli altri marchi commerciali appartengono ai rispettivi proprietari. Revisione agosto 2025.

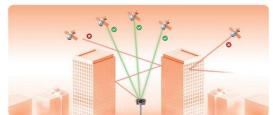
CHCNAV ViLi i100

Ricevitore GNSS Visual-LiDAR con precisione costante anche in assenza di copertura satellitare

CHC Navigation Headquarter 577 Songying Road, Qingpu 201703 Shanghai, China + 86 21 5426 0273

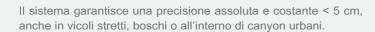
inquiry@chcnav.com

CHC Navigation Europe Office Campus, Building A Gubashi ut 6 1097 Budapest, Hungary +36 20 421 6430 europe office@chcnav.com


➤ ORA, PUOI FIDARTI DI OGNI FIX!

Il ViLi i100 è il ricevitore Visual-LiDAR GNSS RTK di punta di CHCNAV: il futuro per i rilievi ad alta precisione. Con il sistema satellitare GNSS, l'integrazione multisensore, gli algoritmi SFix 2.0 e Vi-LiDAR, garantisce una precisione costante a livello centimetrico in qualunque situazione.

Progettato per ambienti complessi, ViLi i100 consente una misura precisa in diversi contesti, consentendo agli utenti di lavorare con sicurezza anche oltre i limiti tradizionali del GNSS.



► PRECISIONE SICURA E COSTANTE IN AMBIENTI COMPLESSI

Abbattimento del disturbo Multipath Un LiDAR di nuova generazione a 860.000 pun

Un LiDAR di nuova generazione a 860.000 punti/sec cattura accuratamente i dati spaziali 3D degli edifici circostanti in ambienti chiusi, mentre l'analisi della traiettoria RTK in tempo reale filtra automaticamente i segnali affetti da errori multipath causati da ostruzioni o riflessioni.

➤ Algoritmo S-Fix 2.0

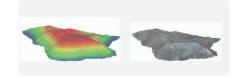
5 cm @20 m in aree inaccessibili al GNSS

L'algoritmo SFix 2.0 assicura 5cm di precisione a 20m anche in aree in assenza di copertura GNSS, Il laser 3D da 860,000pts/sec basato su algoritmo SLAM rende le misure precise anche senza segnale GNSS.

Total Station **⊗** ViLi i100 **⊘**

Non occorre utilizzare una Stazione Totale. L'I100 garantisce una continuità nella misura senza eguali.

NUVOLA DI PUNTI IN 3D PER IL CALCOLO VOLUMI


Precisione 99.98%

Lidar ad alta precisione integrato al GNSS permette il calcolo dei volumi, sterri e riporti in campo.

Calcolo in tempo reale

Scansiona, imposta i contorni e calcola immediatamente i volumi.

Misura senza contatto

Basta inquadrare la superficie da calcolare e ottenere in tutta sicurezza il dato di volume.

➤ Caratteristiche principali

Precisone sicura e constante in ambiente critico. "Once Right, Always Right".

SFix 2.0: affidabile con 5 cm di precisione a 20 m in aree senza copertura GNSS

Vi-LiDAR: scatta una foto e acquisisci punti, non è necessario mirare o rimanere stabile

Ricevitore GNSS di punta all-in-one con tutte le funzionalità.

Calcolo volumi con nuvola di punti 3D. Affidabile, veloce e sicura

Vi-LiDAR RILIEVO CONTACTLESS

Acquisizione di punti anche con palina poco stabile

Vi-LiDAR cattura una foto ed estrae coordinate 3D all'istante, senza bisogno di mirare, rimanere fermi o allineare la palina. Eliminazione dei tremori alle mani, meno errori umani, risultati più rapidi, affidabili e a distanza di sicurezza.

Camera da 8 MP @ 15 m

Fornisce immagini chiare a 15 m con una precisione di 5 cm, mantenendo efficiente la raccolta dei dati in ambienti complessi e aree difficili da raggiungere.

➤ RICEVITORE GNSS ALL-IN-ONE

All-in-One

Tutte le funzioni RTK convenzionali e le funzionalità di nuova generazione in un unico dispositivo compatto, compatibile con LandStar, con NTRIP, UHF e PPP.

Efficienza +50%

Le doppie fotocamere per il picchettamento visivo CAD+AR accelerano i flussi di lavoro fino al 50%.

► APPLICAZIONI

GNSS in aree critiche

GNSS in aree senza segnale

Calcolo Volumi

Rilievo Conctatless