BLOG

Nuovo Laser Scanner SLAM FARO Orbis Premium

Funzionalità avanzate, informazioni migliori

Microgeo è lieta di annunciare l’arrivo del nuovo FARO Orbis Premium, un laser scanner SLAM con funzionalità avanzate, progettato per fornire nuvole di punti di alta qualità in un’unica soluzione completa. Include una fotocamera integrata a 360 gradi con una notevole risoluzione fino a 72 megapixel, per dati 3D colorati di alta qualità e immagini panoramiche nitide. Inoltre, lo scanner è classificato IP54, a conferma della sua robustezza e capacità di funzionare bene in ambienti di scansione difficili.

FARO Orbis Premium

Scopri immagini ad alta risoluzione straordinarie

FARO Orbis Premium è dotato di una telecamera integrata avanzata a 360 gradi progettata per migliorare la qualità delle immagini, creare set di dati colorati e migliorare l’usabilità. Questo strumento innovativo fornisce a ingegneri, geometri e urbanisti dati visivi più completi per migliorare le intuizioni sui progetti e il processo decisionale. È anche un’eccellente soluzione per acquisizioni rapide e dettagliate, con tecnologia Flash, che lo rende particolarmente prezioso per applicazioni di sicurezza pubblica, come la pianificazione pre-incidente e di sicurezza e la documentazione tempestiva di grandi incidenti o scene del crimine.

Dati 3D splendidamente colorati

La fotocamera integrata fornisce splendide nuvole di punti colorate. Immagini più nitide migliorano il processo di colorazione, con conseguenti set di dati vivaci e realistici. Quando combinati con scansioni Flash, che forniscono dati 3D più densi e accurati, gli stakeholder ricevono dati di alta qualità, consentendo un processo decisionale più rapido e informato. Questa combinazione è particolarmente vantaggiosa per i flussi di lavoro di costruzione e geospaziali, dove velocità e accuratezza sono essenziali per il successo.

Immagini di alta qualità

Con una risoluzione fino a 72 MP, la qualità delle immagini panoramiche prodotte dal dispositivo di scansione mobile è ineguagliabile. Cattura le immagini durante una scansione tramite l’app FARO Stream, cliccando su “Cattura immagine statica a 360 gradi”. Questa azione garantirà che le immagini panoramiche vengano automaticamente integrate nei dati elaborati finali da dove le hai catturate. Mettendo in risalto aree specifiche del cantiere con dati di alta qualità e immagini a 360 gradi, fornisci maggiore chiarezza, consentendo agli utenti di accedere a informazioni complete per un processo decisionale informato.

Maggiore usabilità

FARO Orbis Premium non si limita a fornire dati colorati migliorati e una migliore qualità delle immagini; dà anche priorità all’usabilità. Il suo design e la fotocamera integrata consentono agli utenti di collegare lo scanner mobile al data logger con un singolo cavo. Semplifica la configurazione e ottimizza il processo di scansione per coloro che cercano un’esperienza di scansione intuitiva senza compromettere la precisione.

 

Certificazione IP54

Non solo l’Orbis Premium è dotato di una telecamera di alta qualità, ma vanta anche una classificazione di protezione dall’ingresso (IP) di 54. Questa classificazione avanzata garantisce che lo scanner possa resistere ad ambienti più difficili, rendendolo adatto a una gamma più ampia di applicazioni. Che gli utenti stiano affrontando le sfide di un sito industriale, lavorando all’aperto in mezzo a polvere e detriti in un cantiere edile o operando in condizioni sotterranee, possono essere certi che lo scanner è all’altezza della sfida. Costruito per affrontare attività impegnative e resistere a condizioni difficili, l’Orbis Premium è la scelta ideale per coloro che hanno bisogno sia di prestazioni eccezionali che di una robusta durata.

Maggiore precisione con la tecnologia Flash

FARO Orbis Premium è dotato di tecnologia Flash integrata che migliora la precisione fino a 2 mm. Questa innovazione aumenta la densità dei punti nelle aree chiave e fornisce una panoramica 3D completa dei cantieri. Le scansioni Flash offrono una qualità delle immagini di 72 MP e vengono ottenute in circa 15 secondi, consentendo agli utenti di beneficiare di nitidezza dei dati e immagini chiare. La combinazione di acquisizione dati mobile con opzioni di scansione Flash bilancia efficacemente velocità, densità dei punti e precisione.

Dall’acquisizione dei dati alle informazioni sui dati

L’acquisizione dati senza sforzo si basa sulla qualità del software che la supporta e FARO fornisce soluzioni di elaborazione robuste, sia online che offline, per aiutarti ad accedere più rapidamente alle informazioni sui dati. Offriamo anche un’app mobile, FARO Stream, che offre agli utenti un’eccellente visibilità in tempo reale delle scansioni.

Applicazione FARO Stream

FARO Stream è un’app intuitiva progettata per offrire una visibilità migliorata dell’area di scansione, consentendo agli utenti di controllare le scansioni direttamente dai loro smartphone. Quando è connessa a Orbis Premium, l’app traccia la traiettoria di scansione e mostra cosa è stato catturato, in tempo reale, riducendo al minimo la probabilità di dover rivisitare il sito. Oltre a visualizzare le scansioni mentre si verificano, gli utenti possono avviare e interrompere rapidamente le loro scansioni direttamente dall’app e gestire i loro dati. Possono anche caricare i dati finali dal campo su FARO Sphere XG per l’elaborazione automatica, il tutto mentre sono ancora in loco.

FARO Sphere XG

FARO Sphere XG è un pacchetto software online basato su cloud per l’elaborazione e la condivisione di dati. Carica automaticamente i dati Orbis Premium da FARO Stream a Sphere XG e accedi rapidamente alle informazioni. Questo processo semplificato consente alle parti interessate di esaminare i dati prima, fornendo preziose informazioni senza ritardi. Una volta elaborati i dati in Sphere XG, possono essere convertiti in modo efficiente in più formati, semplificando l’integrazione con applicazioni software di terze parti ampiamente utilizzate.

FARO Connect

Per coloro che preferiscono o richiedono un flusso di lavoro offline, FARO include un software basato su desktop, FARO Connect, in cui gli utenti possono elaborare i dati localmente. Gli utenti possono comunque caricare da Connect a Sphere XG se desiderano renderlo ampiamente disponibile ad altri stakeholder, oppure possono mantenere i dati esportati offline per l’uso in software di terze parti.

Il prossimo passo nella scansione SLAM

La tecnologia di mappatura mobile SLAM ha fatto passi da gigante negli ultimi anni, migliorando continuamente ogni anno. L’introduzione di Orbis Premium esemplifica questo progresso, mostrando gli ultimi progressi nell’hardware che combinano accuratezza, velocità e chiarezza dei dati in un singolo dispositivo completo. FARO Orbis Premium è la soluzione perfetta per i settori che richiedono un rapido accesso alle informazioni, set di dati colorati e chiari e la capacità di eseguire scansioni in ambienti difficili precedentemente considerati irraggiungibili.

Contatta i nostri esperti

Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


    Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

    BLOG

    Vantaggi dell’integrazione dei dati GNSS RTK con la tecnologia SLAM

    L’integrazione tra il sistema di posizionamento satellitare GNSS RTK (Global Navigation Satellite System Real-Time Kinematic) e la tecnologia SLAM (Simultaneous Localization and Mapping) rappresenta un importante passo avanti nel campo della navigazione autonoma e della mappatura ad alta precisione. Queste due tecnologie complementari, se utilizzate insieme, permettono di ottenere dati di posizionamento estremamente accurati e mappe dettagliate di ambienti complessi, rendendo questa fusione ideale per numerose applicazioni industriali e scientifiche.

    Cos’è GNSS RTK?

    Il GNSS RTK è una tecnologia di posizionamento in modalità cinematica ed in tempo reale che migliora notevolmente la precisione delle coordinate geografiche ottenute dai satelliti. Mentre un sistema GNSS standard in modalità stand alone fornisce posizionamenti con un errore che può variare da qualche metro a decine di metri, RTK utilizza una stazione base fissa e un rover mobile per correggere gli errori in tempo reale, raggiungendo un’accuratezza di pochi centimetri.

    Cos’è SLAM?

    SLAM è una tecnologia che permette a un dispositivo mobile (come un robot, drone o veicolo autonomo) di mappare un ambiente e contemporaneamente localizzarsi al suo interno. SLAM utilizza sensori come lidar, telecamere o IMU (Inertial Measurement Unit) per creare una mappa dell’ambiente circostante e tracciare la posizione del dispositivo in tempo reale, anche in ambienti sconosciuti o privi di segnale GPS.

    Vantaggi dell’Integrazione GNSS RTK e SLAM

    1. Accuratezza Estrema del Posizionamento

    L’integrazione del GNSS RTK con SLAM consente di combinare la precisione assoluta dei dati GNSS con la localizzazione dettagliata e relativa ottenuta dal sistema SLAM. Questo è particolarmente utile in scenari in cui il dispositivo deve operare in ambienti sia interni che esterni. Nei contesti all’aperto, dove il segnale satellitare è forte, il GNSS RTK fornisce posizioni assolute molto precise; mentre in ambienti chiusi o privi di segnale satellitare, il sistema SLAM può continuare a localizzare il dispositivo con alta accuratezza relativa.

    1. Correzione della Deriva SLAM

    Uno dei limiti principali della tecnologia SLAM è la deriva, ovvero l’accumulo di errori di posizione nel tempo. Questo avviene perché il sistema si basa sulla continua comparazione di caratteristiche visive o di profondità dell’ambiente. L’integrazione con GNSS RTK permette di correggere questi errori fornendo correzioni in tempo reale, mantenendo la precisione del sistema di localizzazione anche su lunghe distanze e in periodi prolungati di operazione.

    1. Navigazione in Ambienti Misti (Indoor/Outdoor)

    L’integrazione di GNSS RTK e SLAM consente ai dispositivi di navigare senza problemi tra ambienti interni ed esterni. Mentre il GNSS RTK fornisce una precisione eccellente in spazi aperti, il segnale satellitare può essere debole o assente in spazi chiusi. In questi casi, il sistema SLAM può prendere il controllo e mantenere una localizzazione affidabile. Questa capacità di operare in ambienti misti è particolarmente utile in contesti industriali, logistici e agricoli, dove le operazioni si svolgono sia all’interno che all’esterno.

    1. Maggiore Robustezza in Ambienti Complessi

    La presenza di ostacoli, superfici riflettenti o ambienti con segnali GNSS deboli può compromettere la precisione dei sistemi di localizzazione tradizionali. La fusione dei dati GNSS RTK con quelli SLAM offre una maggiore robustezza in questi ambienti complessi, poiché i due sistemi possono compensare i rispettivi limiti. Per esempio, in un ambiente urbano con grattacieli che bloccano il segnale GNSS, il sistema SLAM può mantenere la localizzazione del dispositivo sfruttando i dati raccolti da lidar o telecamere.

    1. Miglioramento della Mappatura 3D

    Integrando i dati GNSS RTK e SLAM, è possibile migliorare la qualità delle mappe 3D. Il GNSS RTK fornisce informazioni georeferenziate ad alta precisione, mentre SLAM crea una mappa dettagliata e densa dell’ambiente circostante. Questa combinazione consente di ottenere mappe 3D con coordinamento geospaziale preciso, utile in applicazioni come rilievi topografici, costruzioni, e operazioni di ricerca e soccorso.

    1. Facilità d’Uso e Automazione

    L’integrazione di GNSS RTK e SLAM facilita l’automazione in numerose applicazioni, come i veicoli autonomi e la robotica mobile. La capacità di navigare e mappare autonomamente sia in ambienti chiusi che aperti con alta precisione riduce la necessità di intervento umano, migliorando l’efficienza e riducendo i costi operativi.

    Applicazioni dell’Integrazione GNSS RTK-SLAM

    1. Droni per Rilievi Aerei e Mappatura: I droni possono beneficiare di una navigazione accurata anche in spazi aperti e complessi come foreste, canyon, o centri urbani.
    2. Robotica di Magazzino: I robot in ambienti logistici possono passare da aree interne a cortili esterni senza perdere precisione nella localizzazione.
    3. Veicoli Autonomi: Per i veicoli a guida autonoma, è fondamentale disporre di un sistema che garantisca una localizzazione precisa sia in strade aperte (con GNSS RTK) che in parcheggi sotterranei o tunnel (con SLAM).
    4. Agricoltura di Precisione: Le macchine agricole possono mappare accuratamente i campi agricoli, migliorando l’efficienza delle operazioni come la semina e l’irrorazione.

    Conclusioni

    L’integrazione dei dati GNSS RTK con la tecnologia SLAM offre una soluzione avanzata per la navigazione autonoma e la mappatura in tempo reale. Questa combinazione non solo migliora la precisione della localizzazione, ma consente anche di superare i limiti che ciascuna tecnologia ha singolarmente. Dalla robotica, ai droni, ai veicoli autonomi, questa fusione sta aprendo la strada a una nuova generazione di dispositivi capaci di operare in modo preciso e autonomo in qualsiasi ambiente, aumentando l’efficienza e riducendo i costi.

    Contatta i nostri esperti

    Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


      Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

      BLOG

      Meglio un rilievo Fotogrammetrico o LiDAR?

      La fotogrammetria e il LiDAR sono due tecnologie utilizzate per il rilievo tridimensionale, ma si basano su principi e strumenti diversi. Ecco le principali differenze tra un rilievo fotogrammetrico e un rilievo LiDAR:

      1. Principio di funzionamento

      • Fotogrammetria: Si basa su fotografie bidimensionali scattate da diverse angolazioni. Utilizzando tecniche di triangolazione, si ricostruisce la posizione tridimensionale degli oggetti. La fotogrammetria sfrutta la luce visibile e richiede che la scena sia ben illuminata per ottenere buone immagini.
      • LiDAR (Light Detection and Ranging): Utilizza impulsi laser per misurare la distanza tra il sensore e gli oggetti circostanti. Il sensore invia impulsi di luce laser e misura il tempo impiegato per il ritorno degli impulsi riflessi, creando così una nuvola di punti 3D molto accurata.

      2. Strumenti

      • Fotogrammetria: Fotocamere (aeree o terrestri), software di elaborazione immagini per generare modelli 3D (come 3DF Zephyr LINK).
      • LiDAR: Scanner laser montati su droni, aerei o veicoli terrestri. Questi scanner inviano impulsi laser per creare mappe tridimensionali.

      3. Precisione e dettaglio

      • Fotogrammetria: Può essere molto dettagliata, ma la precisione può essere inferiore in condizioni di scarsa illuminazione o quando si rilevano superfici riflettenti o trasparenti. La qualità del modello dipende dalla risoluzione delle immagini e dal numero di punti di vista utilizzati.
      • LiDAR: Estremamente preciso e in grado di ottenere misurazioni accurate anche su superfici difficili, come la vegetazione densa o in condizioni di scarsa visibilità (es. nebbia o oscurità). Il LiDAR penetra anche tra la vegetazione, permettendo di rilevare il terreno sottostante.

      4. Ambienti e applicazioni

      • Fotogrammetria: È adatta per l’architettura, la documentazione del patrimonio culturale, la mappatura topografica, la modellazione urbana e progetti di ricostruzione storica. La fotogrammetria richiede ambienti ben illuminati e non è efficace in presenza di vegetazione fitta.
      • LiDAR: Utilizzato soprattutto in mappature topografiche, geologiche e forestali, per rilevare strutture sotterranee e creare modelli del terreno sotto la vegetazione. È ideale per l’uso in foreste o aree in cui il terreno è difficile da rilevare visivamente.

      5. Costo e complessità

      • Fotogrammetria: Generalmente meno costosa, poiché utilizza fotocamere standard, ma richiede una notevole elaborazione software per ottenere risultati accurati.
      • LiDAR: Più costoso a causa della complessità della strumentazione (scanner laser), ma fornisce risultati immediatamente più precisi, riducendo la necessità di post-elaborazione.

      6. Dati raccolti

      • Fotogrammetria: Produce modelli 3D basati su immagini che possono essere utili anche per analisi visive (texture, colori), fornendo informazioni sia geometriche che visive.
      • LiDAR: Produce nuvole di punti estremamente precise, ma non cattura informazioni visive (come colori o texture) a meno che non venga combinato con fotocamere.

      Sintesi

      • Fotogrammetria: Economica, buona per la documentazione visiva, ideale per modelli di superfici con pochi ostacoli.
      • LiDAR: Più costoso, ma estremamente preciso, funziona in tutte le condizioni e penetra attraverso la vegetazione.

      La scelta tra le due tecnologie dipende dalle esigenze del progetto, dal budget e dalle condizioni ambientali.

      Contatta i nostri esperti

      Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


        Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

        BLOG

        Microgeo rinnova la sua identità con un Nuovo Logo Distintivo

        [11.09.2023] – [Campi Bisenzio (FI) – Italia] – Microgeo, in occasione del suo ventunesimo compleanno,  è entusiasta di presentare il suo nuovo logo aziendale, un simbolo di innovazione e progresso. Questo passo importante, avviene dopo venti anni di storia e riflette l’evoluzione continua della nostra azienda e la nostra dedizione a soddisfare le esigenze in costante cambiamento dei nostri clienti e del mercato nel quale operiamo.

         

        Il Significato dietro il Nuovo Logo

        Il nuovo logo Microgeo è un cambiamento storico per la nostra azienda, che dopo venti anni dalla sua nascita, si rinnova. Rappresenta la nostra volontà di rimanere rilevanti e all’avanguardia nel nostro settore, mantenendo al contempo gli aspetti caratteristici della nostra azienda che ci hanno resi un nome di fiducia per i nostri clienti.

         

        1. Semplicità: Il nostro nuovo logo è caratterizzato da linee pulite e una semplicità elegante, che simboleggiano la nostra dedizione alla chiarezza e alla trasparenza nei nostri rapporti con i clienti.

         

        1. Modernità e Innovazione: Le forme e lo stile scelti per il nuovo logo rappresentano l’innovazione e la modernità, sottolineando il nostro impegno nel rimanere sempre all’avanguardia nel settore.

         

        1. Continuità e Fiducia: Nonostante il cambiamento, il nuovo logo mantiene elementi distintivi della nostra identità aziendale precedente, a sottolineare la nostra storia di successo e la nostra fedeltà ai nostri clienti.

         

        L’importanza del Rebranding

        Questo rinnovamento del nostro logo non è solo una questione di estetica, ma rappresenta un passo significativo nel nostro impegno a crescere e adattarci alle esigenze del mercato in continua evoluzione. Il logo è la faccia dell’azienda, il primo punto di contatto con i clienti e le aziende con le quali collaboriamo ed è fondamentale che sia in grado di comunicare chi siamo e cosa rappresentiamo.

        Questo processo di rebranding è stato guidato dalla volontà di rimanere rilevanti e di mostrare il nostro impegno a crescere e migliorare costantemente. Siamo fiduciosi che il nuovo logo di Microgeo ci aiuterà a raggiungere nuovi traguardi e a continuare a fornire prodotti e servizi di alta qualità ai nostri clienti.

         

        Conclusioni

        Il lancio del nuovo logo aziendale è un passo storico nella nostra evoluzione come azienda. Continueremo a perseguire l’eccellenza nei prodotti e nei servizi che offriamo e siamo entusiasti di condividere questa nuova fase con voi, i nostri preziosi clienti e partner.

        Grazie per la vostra costante fiducia che in questi venti anni ha fatto crescere e consolidare il nome di Microgeo nel settore del rilievo.

        BLOG

        FARO acquisisce il leader del mercato della scansione mobile GeoSLAM

        FARO acquisisce il leader del mercato della scansione mobile GeoSLAM

        Lake Mary, Florida, 1 settembre 2022 – FARO® Technologies, Inc. (Nasdaq: FARO), leader mondiale nelle soluzioni di realtà digitale 4D, ha annunciato oggi l’acquisizione dell’azienda britannica GeoSLAM, fornitore leader di soluzioni di scansione mobile con un software proprietario di localizzazione e mappatura simultanea (SLAM) ad alta produttività per la creazione di modelli 3D da utilizzare nelle applicazioni Digital Twin. Fondata nel 2012, si prevede che l’aggiunta di GeoSLAM contribuirà ad ampliare e accelerare in modo significativo l’opportunità di crescita del mercato di FARO nel settore della scansione mobile.

        “Siamo entusiasti di aggiungere la tecnologia di scansione 3D portatile di GeoSLAM al nostro portafoglio di soluzioni all’avanguardia per l’acquisizione dei dati”, ha dichiarato Michael Burger, Presidente e CEO di FARO. “FARO offre ora la più ampia gamma di soluzioni di acquisizione dati 4D del settore, tra cui immagini basate su telecamere a 360°, scansioni mobili e scansioni laser fisse ad alta precisione, consentendo ai clienti di bilanciare le esigenze di precisione, velocità e dettaglio in base alle loro necessità. Queste tecnologie di acquisizione costituiscono la base della nostra offerta SaaS basata sulla realtà digitale 4D che consentirà ai clienti di accedere a più fonti di dati 4D per la visualizzazione e l’analisi attraverso un’unica esperienza utente. Diamo il benvenuto al team GeoSLAM nella nostra famiglia FARO”.

        “L’unione con FARO rappresenta il passo successivo nella crescita di GeoSLAM e l’affermazione della mappatura mobile come motore di crescita nel modo in cui le aziende mappano e comprendono i loro spazi”, ha aggiunto Andy Parr, CEO di GeoSLAM. “Entrambe le aziende condividono la visione dell’importanza della scansione mobile nel fiorente mercato dell’acquisizione della realtà digitale.”

        GeoSLAM ha registrato un fatturato di 14,5 milioni di sterline con un EBITDA del 18% nell’anno fiscale conclusosi il 31 marzo 2022. L’EBITDA, una misura non-GAAP, è calcolato come reddito netto/perdita prima di interessi (reddito) passivi, oneri netti, imposte sul reddito (beneficio), variazione dei tassi di cambio e svalutazione e ammortamento. La transazione si è conclusa il 1° settembre 2022, finanziata con le riserve di cassa disponibili e il corrispettivo in azioni.

        In base ai termini dell’accordo, gli azionisti di GeoSLAM hanno ricevuto un pagamento in contanti di 22 milioni di sterline e 495.562 azioni di FARO soggette alle consuete disposizioni di lock-up. FARO prevede che l’acquisizione avrà un impatto positivo sull’EPS Non-GAAP nel 2023.

        Per noi di Microgeo la notizia è stata accolta con grande entusiasmo, anche alla luce dei recenti accordi commerciali stretti con FARO in merito all’unicità della nostra azienda come rivenditore dei prodotti del brand Statunitense nel settore AEC. Siamo certi che questa acquisizione non potrà che portare grandi benefici ad un settore, quello del rilievo con laser scanner dinamico, sempre più di interesse per il mondo dei professionisti del settore.

         

        ll Team Microgeo!

        Nuovo Logo GeoSLAM

        Contatta i nostri esperti

        Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.








          BLOG

          Gemello digitale 3D della Chiesa di San Michele Arcangelo

          La sperimentazione presentata costituisce la prima fase di una ricerca interdisciplinare finalizzata alla codificazione di procedure di controllo e analisi non distruttiva dello stato di conservazione di manufatti del patrimonio culturale per orientare azioni di conservazione preventiva.

          Lo studio è coordinato dal prof. Massimiliano Campi, dalla prof.ssa Antonella di Luggo e dall’arch. Valeria Cera del Dipartimento di Architettura dell’Università degli Studi di Napoli Federico II, nell’ambito dell’Accordo di Collaborazione Scientifica tra il Centro Interdipartimentale di Ricerca Urban\Eco della Federico II e la Diocesi di Teggiano-Policastro, nella figura del Vicario Generale, Don Giuseppe Radesca.

          L’indagine è stata condotta sulla chiesa di San Michele Arcangelo a Padula interessata da fenomeni di distacco dell’intonaco di alcuni affreschi del 1954, localizzati all’intradosso dei sistemi voltati, dai quali risultano ora visibili le tracce di pitture antecedenti.

          Il lavoro è stato condotto con il supporto dell’azienda MicroGeo, coinvolta allo scopo di relazionare le componenti morfo-metriche acquisite con tecniche di rilievo strumentale ad aspetti cognitivi e tecnici quali dati microclimatici, termici, materici e di scostamento geometrico, al fine di rendere il modello tridimensionale del rilievo architettonico un supporto per la simulazione di scenari connessi a programmi di prevenzione conservativa.

          Per tale motivo, dopo aver effettuato un rilievo TLS con un  Faro Focus3D X330 della chiesa, sono state acquisite informazioni di dettaglio delle parti ammalorate degli affreschi attraverso un rilievo con termocamera.

          Impiegando una camera termica TESTO890, sono state scattate immagini termiche e, allo stesso tempo, sono state registrate anche fotografie nel campo del visibile con una camera reflex CanonEos1300D collocata sullo stesso treppiede in modo da far coincidere i centri ottici dei due sensori nella fase di processamento. All’interno del software 3DF Zephyr, sono stati dapprima orientati e processati i fotogrammi reflex. Sfruttando la coincidenza dei centri ottici, sono state selezionate poi le immagini termiche come origine del dato. A partire dalla nuvola densa precedentemente ricostruita, le informazioni sul comportamento termico delle superfici sono state proiettate sui singoli punti della nuvola ottenendo un modello 3D discreto in cui per ogni punto alla posizione nello spazio risulta aggregato anche il valore di temperatura e il dato di colore.

          Con riferimento alla cupola di copertura del transetto, l’analisi degli stati termici ha evidenziato la presenza di 4 aree fredde discendenti dalla lanterna verso l’imposta, con una temperatura più bassa (di 0.8 o 1.9 gradi a seconda della stagione) rispetto alle zone circostanti.

          La lettura incrociata dei dati termici con quelli geometrici e fotografici ha restituito l’insistenza di una condizione patologica di forte umidità in 4 spicchi che sono molto più estesi rispetto alle parti che visivamente risultano intaccate.

          Una ispezione visiva condotta all’estradosso, ha consentito in effetti di ricondurre tali porzioni ai punti liberi della superficie della cupola, non interessati dall’intersezione con il sistema di copertura dell’aula e del transetto. Qui, in effetti, non era presente una adeguata coibentazione, oggi messa in opera.

          Grazie quindi ai dati provenienti dalla termocamera è stata ravvisata la presenza di umidità che non è visibile in superficie e, per questo, da monitorare per ovviare alla manifestazione di ulteriori fenomeni di degrado, comportanti distacchi di intonaco in aree più grandi.

          Chiaramente, le analisi e le relative valutazioni critiche definiscono la base di partenza per indirizzare alcune azioni di intervento diretto e, al tempo stesso, orientare le scelte più opportune per successivi approfondimenti diagnostici, più ristretti e mirati, riducendo i danni al patrimonio storico.

          Questa fase di progetto ha visto il supporto degli arch. Michele Sanseviero, Alessandro Cancellaro e Marika Falcone nonché il contributo degli architetti Giovanni Angrisani e Lorenzo Bisceglia.

          Il lavoro è stato, inoltre, condotto con la competente collaborazione di Michele Cirignano e il sostegno dell’azienda MicroGeo che si ringraziano per aver messo a disposizione della ricerca la termocamera TESTO890 e il software 3DF Zephyr per il processamento dei dati.

          Per ulteriori approfondimenti, si rimanda alla lettura di alcuni contributi scientifici:

          Cera Valeria (2022). Multisensor Data Fusion for Cultural Heritage Assets Monitoring and Preventive Conservation. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, pp.151-157. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-151-2022, 2022.

          Cera Valeria (2021). La manipolazione di modelli discreti per orientare l’indagine diagnostica per il restauro. In Rosa Anna Genovese (Ed.), Il patrimonio culturale tra la transizione digitale, la sostenibilità ambientale e lo sviluppo umano. Cultural Heritage in digital transition, environmental sustainability and human development, pp. 167-190. Napoli: Giannini Editore. ISBN 978-88-6906-196-7.

          Contatta i nostri esperti

          Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


            Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

            BLOG

            Quante tipologie di laser scanner esistono?

            Sostanzialmente ci sono 3 tipologie di laser scanner: TOF (a tempo di volo), a differenza di fase ed a triangolazione.

            La tecnologia laser scanner a Tempo di Volo permette di generare la nuvola di punti tramite il calcolo del tempo impiegato dal raggio laser a percorrere la distanza dall’emettitore al soggetto colpito e viceversa, sapendo che la velocità di propagazione del fascio laser è paritetica a quella della luce. Conoscendo l’angolo verticale ed orizzontale dell’emissione del raggio potremo definire la coordinate del punto misurato. Questi laser scanner si caratterizzano per l’abilità di rilevare dati molto distanti, arrivando addirittura a 6 km di raggio.

            Nei laser scanner a differenza di fase la distanza è calcolata comparando la differenza di fase tra l’onda trasmessa e quella ricevuta, questa tecnica richiede dedicati algoritmi di calcolo per generale le informazioni delle coordinate nello spazio. Questi laser scanner si caratterizzano per una velocità di acquisizione molto rapida e per una elevata densità di dato acquisito che può arrivare fino a 0.6 mm tra un punto e l’altro ad una distanza di 10 metri.

            La tecnologia dei laser scanner a triangolazione si basa sull’acquisizione da parte di un sensore IR di un pattern di punti infrarossi in un determinato spazio, i proiettori IR ad oggi permettono di proiettare fino a 300.000 raggi 60 volte al secondo permettendo acquisizione 3D in movimento ed in tempo reale. Questi laser scanner si caratterizzano per la maneggevolezza d’uso e per l’abilità di scansionare zone d’ombra non rilevabili con i laser scanner precedenti..

            Contatta i nostri esperti

            Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


              Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

              BLOG

              Che cos’è e come funziona un laser scanner 3D?

              I Laser Scanner sono strumenti in grado di misurare ad altissima velocità la posizione di centinaia di migliaia di punti i quali definiscono la superficie degli oggetti circostanti. Il risultato dell’acquisizione è un insieme di punti molto denso comunemente denominato “nuvola di punti”.

              Possiamo definire i laser scanner come sistemi di misura diretta permettendo di ottenere misurazione correlate ad una precisione strumentale definita da un certificato di calibrazione.

              Come funziona il laser scanner?

              Prima di avviare la nostra scansione per ottenere la già citata “nuvola di punti” occorre impostare i parametri della stessa. Infatti la velocità e il passo delle rotazioni possono essere impostate dall’operatore, il quale agendo su questi parametri determina la risoluzione della scansione, cioè la densità della griglia di punti rilevati ad una certa distanza, e la qualità del dato acquisito, tipicamente più alta per rotazioni più lente. I due parametri determinano quindi anche la durata della scansione che può variare da circa trenta secondi fino a varie decine di minuti per scansioni complete a 360°.

              Durante l’acquisizione lo strumento archivia, per ciascun punto rilevato, la distanza calcolata e gli angoli orizzontale e verticale in base alla posizione del corpo e dello specchio. Oltre a queste informazioni, viene acquisito anche il valore di riflettanza della superficie colpita dal laser che sarà tanto più alto quanto la superficie tenderà al colore bianco.

              Inoltre esistono laser scanner 3D che montano una fotocamera digitale integrata che, dopo la fase di acquisizione dei dati geometrici, viene utilizzata attraverso procedure automatiche per l’acquisizione di immagini dello spazio rilevato. Le foto così acquisite saranno successivamente mosaicate dai software di elaborazione dei dati e applicate alle nuvole di punti per arricchirle delle informazioni di colore.

              Come funziona il Laser Scanner Mobile?

              Oltre al laser scanner terrestre esistono sistemi laser che acquisiscono dati in movimento, i cosiddetti laser scanner mobili.
              Essi possono essere integrati a bordo di autoveicoli, veicoli su rotaie, imbarcazioni, aerei, elicotteri o droni.

              Questi scanner sono molto utili per rilevare grandi aree in tempi brevi.

              Le applicazioni principali possono essere:

              • City Modelling
              • Rilievo di strade gallerie
              • Rilievo di cave
              • Monitoraggio ambientale
              • Rilievo costiero e fluviale
              • Agricoltura

              Durante lo spostamento questi scanner acquisiscono il dato e lo registrano in tempo reale; il sistema di stabilizzazione IMU e il posizionamento tramite GPS aiutano lo strumento in questa fase.

              Scanner Mobile con tecnologia SLAM

              Esistono, inoltre, sistemi di scansione in movimento che non fanno uso del GPS ma utilizzano la tecnologia SLAM.
              Per SLAM (dall’inglese Simultaneous Localization And Mapping) si intende il processo per cui uno strumento si muove in un ambiente sconosciuto, costruisce la mappa di tale ambiente ed è capace di localizzarsi all’interno di quella mappa.

              I dispositivi come gli strumenti GeoSLAM prendono i dati dai sensori, in questo caso un Laser Scanner, per costruire un’immagine dell’ambiente che li circonda e riuscendo a posizionare gli elementi all’interno di quell’ambiente. I dati forniti dal Laser Scanner e contemporaneamente da una piattaforma inerziale (IMU) all’interno dello strumento consentono di calcolare e di posizionarsi nell’ambiente circostante.

              Contatta i nostri esperti

              Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


                Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

                BLOG

                Perché la Serie VZ della RIEGL è considerata la Ferrari del mondo Laser Scanner

                La società austriaca Riegl da oltre 40 anni si distingue per la produzione di sistemi LiDAR sia terrestri sia aerei (UAV, aerei ed elicotteri) di altissima qualità.  La mission è quella di adempiere perfettamente alle attività di misurazione soddisfacendo pienamente le aspettative dei clienti in tutto il mondo.

                La combinazione hardware all’avanguardia con la parte software altrettanto innovativa, infatti, si traduce nella produzione di potenti soluzioni per molteplici campi di applicazione nell’ambito del rilevamento.

                Nella sezione dei Laser Scanner terrestri, la Riegl ha prodotto strumenti robusti e completamente portatili, testati in condizioni rigorose per prestazioni affidabili anche in condizioni ambientali estremamente impegnative.

                La serie VZ-i degli Scanner terrestri Riegl, ad esempio, nasce per soddisfare le esigenze di quegli operatori che hanno bisogno di uno strumento che sia allo stesso tempo veloce ed accurato.

                Il Riegl VZ-400i, in particolare, è un sistema di scansione laser 3D che combina un’innovativa architettura di elaborazione e una suite di sensori MEMS con l’ultima tecnologia Laser Scanning Engine di Riegl.
                Con il suo giroscopio, l’accelerometro, la bussola e il barometro, il VZ-400i può essere utilizzato in quasi tutti gli ambienti garantendo l’orientamento. Il sistema, inoltre, consente una gamma incredibile di flessibilità, fornendo il supporto per numerose periferiche e accessori esterni attraverso le sue porte USB integrate e punti di fissaggio stabili.

                Di seguito, alcuni punti per cui il Riegl VZ-400i si distingue dagli altri Laser Scanner sul mercato:

                 

                Ambiti applicativi        

                 

                Il Riegl VZ-400i non si pone limiti. La Riegl, infatti, si è sempre impegnata a fornire le massime prestazioni, qualità e affidabilità a prescindere dall’ambiente in cui i loro strumenti operano. Scegliere Riegl, quindi, significa non scendere mai a compromessi e di lavorare anche in condizioni estreme.

                 

                Gli ambiti applicativi tipici riguardano:

                Topografico;

                Minerario;

                Architettonico;

                Archeologico e Beni Culturali;

                Rilevamento As-Built;

                BIM;

                City Modeling;

                Tunnel;

                Monitoraggio

                Integrazione fotocamera professionale

                 Una buona parte di Laser Scanner in commercio dispongono all’interno dello strumento di una o più fotocamere coassiali tra di loro o con il raggio laser. Tuttavia, la colorazione delle nuvole di punti Laser Scanner con la fotocamera integrata in certe situazioni non offre un risultato all’altezza.

                Nel caso del VZ-400i, la Riegl dà la possibilità agli operatori di integrare al proprio Laser non una qualsiasi macchina fotografica, ma una DSLR (Digital Single-Lens Reflex) professionaleLa combinazione del Laser Scanner, del software a bordo, e della fotocamera consente di ottenere risultati fotorealistici 3D unici. E non solo: una nuova funzionalità consente l’acquisizione di immagini simultaneamente durante la scansione, riducendo drasticamente i tempi di acquisizione.

                Connessione Cloud con rete 4G

                 La serie RIEGL VZ-i fornisce connettività cloud tramite rete 3G / 4G LTE, rete Wi-Fi o LAN. I dati acquisiti vengono quindi trasferiti nel cloud al termine di ogni scansione. La sincronizzazione istantanea permette agli operatori di poter scaricare ed elaborare in tempo reale i dati appena acquisiti.  L’archiviazione cloud supportata attualmente include Amazon S3 e Microsoft Azure.

                Il Riegl VZ-400i è smart

                 L’app RIEGL VZ-i Series permette il controllo remoto dello scanner. Otterrai il potentissimo mondo Riegl nel palmo della tua mano. L’app è disponibile sia per iOS, Android e Windows.

                Registrazione automatica sul campo

                Una delle attività più dispendiose in termini di tempo che i professionisti si trovano ad affrontare è la registrazione delle nuvole di punti. Oltre alla già citata sincronizzazione Cloud, il VZ-400i, grazie a due processori a bordo, è in grado di effettuare contemporaneamente l’acquisizione dati e la registrazione automatica.

                Il primo processore è infatti dedicato all’acquisizione dati ed all’analisi del segnale Multi-Target e a tutte le operazioni di sistema, mentre il secondo si dedica al calcolo in tempo reale dell’allineamento.

                 Capacità multi-target

                 Senza dubbio una delle peculiarità del VZ-400i è la capacità multitarget. Cosa s’intende? Durante l’acquisizione ogni impulso laser emesso fornisce diverse informazioni di tutti i bersagli che ha incontrato.

                Queste informazioni possono essere utilizzate per migliorare in modo significativo il contenuto informativo delle nuvole di punti. Quindi, a differenza di molti Laser Scanner sul mercato che non generano echi di ritorno e quindi perdono buona parte del dato, con il VZ-400i è possibile personalizzare il programma di misurazione e il numero massimo di target da utilizzare, conservando la maggior parte del dato.

                La caratteristica di generare echi di riflessi, ad esempio, permette al VZ-400i di leggere il terreno al di sotto della vegetazione.

                Contatta i nostri esperti

                Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


                  Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

                  BLOG

                  Duomo di Milano: rilievo Laser Scanner ed elaborazione in NUBIGON

                  Quando si combina il dato proveniente dal Laser Scanner Riegl VZ400i con il software di visualizzazione e modellazione 3D NUBIGON il risultato è semplicemente sorprendete. È il caso dell’attività dimostrativa svolta da MicroGeo presso il Duomo di Milano.

                  Il rilievo è stato eseguito per un totale di 60 punti di scansione. Per ogni scansione sono stati acquisiti circa 22 milioni di punti e 6 immagini ad alta risoluzione (impiegando una fotocamera Nikon D610 nikkor 14mm in modalità HDR) al fine di produrre un’immagine panoramica utile alla colorazione dei punti.

                  La durata di ogni singola scansione è stata di 44 secondi (foto comprese). Le 60 scansioni sono state registrate automaticamente attraverso i tools di registrazione di Riegl che consentono di sfruttare i dati acquisiti dai sensori a bordo dello strumento (GPS, sistema inerziale, bussola). La registrazione è stata raffinata in post-processing applicando l’algoritmo di ICP (Multistation Adjustament) messo a disposizione dalla software suite Riegl.

                  La scansione ha dato come risultato finale uno scarto quadratico medio (RMS) inferiore a 6 mm.

                  La nuvola completa è stata ricampionata con una maglia 0.02 x 0,02 cm ed esportata in NUBIGON in formato .LAS

                  In NUBIGON è stata eseguita la fase di post elaborazione. È stato definitivo lo shader da applicare alla nuvola, sono state impostate le luci e pre-calcolate le ombre portate in shadow map al fine di caratterizzare la matericità del modello puntiforme. Le video sequenze sono state pre-calcolate in sequenza di frame e montate in fase di compositing.

                  Contatta i nostri esperti

                  Siamo a tua disposizione per rispondere a domande sui nostri prodotti e fornirti la consulenza di cui hai bisogno.


                    Cliccando su “invia” autorizzo il trattamento dei miei dati personali, dichiarando di essere a conoscenza dei diritti riconosciuti, in conformità al Regolamento U.E. n° 679/2016 sulla tutela della privacy.

                    MicroGeo © 2024 powered by Webolik. Tutti i diritti riservati

                    Seguici sui nostri social

                    ×

                    Contattaci tramite Whatsapp

                    × Come possiamo aiutarti?